Hliník

Hliník je velmi lehký kov bělavě šedé barvy, dobrý vodič elektrického proudu, široce používaný v elektrotechnice a ve formě slitin v leteckém průmyslu a mnoha dalších oborech průmyslové výroby.

Výskyt v přírodě

Díky velké reaktivitě hliníku se v přírodě setkáváme prakticky pouze s jeho sloučeninami.

Hliník je třetím nejvíce zastoupeným prvkem v zemské kůře. Podle posledních dostupných údajů tvoří hliník 7,5–8,3 % zemské kůry. V mořské vodě je jeho koncentrace velmi nízká, pouze 0,01 mg Al/l a ve vesmíru připadá na jeden atom hliníku přibližně půl milionu atomů vodíku.

Nejběžnější horninou na bázi hliníku je bauxit. Obvykle bývá doprovázen dalšími příměsemi na bázi oxidů křemíku, titanu , železa. Jiným významným minerálem je kryolit používaný především jako tavidlo pro snížení teploty tání bauxitu. Minerály na bázi oxidu hlinitého patří mezi velmi významné i ceněné. Korund je na 9. místě Mohsovy stupnice tvrdosti. Technický oxid hlinitý se nazývá také elektrit a je hojně využíván k výrobě brusného papíru.

Drahé kameny, jejichž základním materiálem je oxid hlinitý se liší příměsí, která způsobuje jejich charakteristické zbarvení. Červený rubín je zbarven příměsí oxidu chromu, modrý safír obsahuje především stopová množství oxidů titanu a železa.

Obě zmíněné formy korundu patří k nejvíce ceněným drahým kamenům na světě, ale mají i významné využití v technice. Safírové hroty vynikají svou tvrdostí a odolností a vybavují se jimi špičkové vědecké měřicí přístroje. Rubín je znám jako materiál pro konstrukci prvního laseru na světě. Titan-safírový laser vyniká extrémně krátkými pulsy (< 50 fs).

Výroba

Přestože hliník patří mezi prvky nejvíce zastoupené v zemské kůře, patřila jeho průmyslová výroba do ještě poměrně nedávné doby k velmi obtížným procesům. Je to především z toho důvodu, že elementární hliník nelze jednoduše metalurgicky vyredukovat z jeho rudy jako např. železo koksem ve vysoké peci. Teprve zvládnutí průmyslové elektrolýzy taveniny kovových rud umožnilo současnou mnohasettunovou roční produkci čistého hliníku.

Při elektrolýze se z taveniny směsi předem přečištěného bauxitu a kryolitu o teplotě asi 950 °C na katodě vylučuje elementární hliník, na grafitové anodě vzniká kyslík, který ihned reaguje s materiálem elektrody za vzniku toxického plynného oxidu uhelnatého, CO.

Na území někdejšího Československa probíhala od roku 1953 výroba hliníku ve slovenském Žiaru nad Hronom, kam se převážná většina bauxitu dovážela z Maďarska. Výroba primárního hliníku zde byla ukončena v roce 1998.

Využití kovového hliníku

Předměty denní potřeby

Kovový hliník nalézá uplatnění především díky své poměrně značné chemické odolnosti a nízké hmotnosti. Proto se z něj vyrábějí například některé drobné mince, ale i běžné kuchyňské nádobí a příbory. Po vyválcování do tenké folie se s ním setkáme pod názvem alobal při tepelné úpravě pokrmů nebo jako ochranného obalového materiálu pro nejrůznější aplikace.

Společně se stříbrem slouží hliník ve formě velmi tenké folie jako záznamové médium v kompaktních discích (CD) ať již pro záznam zvuku nebo jako paměťové médium ve výpočetní technice. Tato vrstva se na plastový podklad obvykle napařuje tichým elektrickým výbojem ve vakuu.

Hliník jako vodič

Vzhledem k poměrně dobré elektrické vodivosti se kovového hliníku užívá jako materiálu pro elektrické vodiče. Oproti použití mědi má ovšem některé nevýhody: Hliník je křehčí, vodič se např. opakovaným ohybem snadno zlomí. Průchodem proudu se zahřívá a zvětšuje svůj objem. Pokud je hliníkový vodič spojen mechanicky s jiným vodičem kupříkladu pomocí šroubu, pak toto roztažení nemůže probíhat všemi směry stejně. Není-li spoj optimálně navržen, dojde k plastické deformaci měkkého hliníku. Při ochlazení, tedy když proud přestane vodičem protékat, se naopak smrští rovnoměrně ve všech směrech, což způsobí, že se šroubované kontakty poněkud uvolní, čímž se zvýší jejich přechodový odpor, který následně vede ke zvýšenému zahřívání. Navíc se hliníkový vodič vlivem působení vzdušného kyslíku potahuje vrstvičkou nevodivého oxidu hlinitého a vinou toho se přechodový odpor mezi vodičem a svorkovnicí dále zvyšuje. Hliníkové kontakty mají být proto pravidelně dotahovány, aby se zmenšilo nebezpečí vzniku požáru.

Tyto vlastnosti vedly v posledních letech k omezení používání hliníku ve prospěch mědi zejména v domovních rozvodech. Nadále se hliník jako vodič běžně používá v dálkových rozvodech a průmyslových aplikacích, které jsou pod profesionálním dohledem.

Aluminotermie

Díky své elektropozitivitě má hliník značnou afinitu ke kyslíku a ochotně s ním reaguje. Této vlastnosti využívá aluminotermie – metoda výroby některých kovů z jejich oxidů za použití hliníku jako redukčního činidla. Při uvedené reakci se také uvolňuje značné množství tepla a teplota dosahuje dostatečných hodnot pro roztavení např. kovového železa. Následující reakce práškového hliníku s oxidem železitým se dříve často používalo ke spojování železných kolejnic vzniklým roztaveným železem.

Práškový hliník se používá také jako složka některých trhavin, protože svoji přítomností zvyšuje teplotu exploze i brizanci výbušniny.

Slitiny hliníku

Píst spalovacího motoru, vyrobený z hliníkových slitin

Slitiny hliníku se využívají proto, že čistý hliník má poměrně malou pevnost. Nejvýznamnějšími prvky, které se vyskytují ve slitinách s hliníkem, jsou měď, hořčík, mangan, křemík a zinek. Měď, která může být do 12% obsahu, zvyšuje tvrdost i pevnost, nepříznivě ovlivňuje tvárnost a odolnost proti korozi. Hořčík, do maximálního obsahu 11%, zajišťuje vytvrditelnost a zlepšuje odolnost proti korozi a pevnost. Mangan, obvykle do 2% obsahu, zvyšuje tvárnost, pevnost, houževnatost a odolnost proti korozi. Křemík, až do 25% obsahu (u slévárenských slitin) či 1% (u tvárných), zvyšuje odolnost proti korozi a pevnost. Zinek (max. 6-8%)zvyšuje pevnost za cenu nižší odolnosti proti korozi. Železo zvyšuje slévatelnost a pevnost, snižuje tvárnost a odolnost proti korozi a to až do 1,5% obsahu. Nikl zvyšuje teplotní odolnost, pevnost, houževnatost i odolnost proti korozi, jeho koncentrace ve slitinách je 2% obsahu.